UREA (UREASE)

Enzymatic Colorimetric Determination of Serum Urea

REF. URE-MC-02100 (2X100 ml) URE-MC-0250 (2x50ml)

INTENDED USE

NS Biotec urea/BUN reagent is intended for the in vitro quantitative determination of urea/BUN in serum, plasma and urine on both automated and manual systems.

CLINICAL SIGNIFICANCE

Urea is the major end product of protein nitrogen metabolism. It is synthesized by the urea cycle in the liver from ammonia, which is produced by amino acid deamination. Urea is excreted mostly by the kidneys but minimal amounts are also excreted in sweat and degraded in the intestines by bacterial action. Determination of blood urea nitrogen is the most widely used screening test for renal function. When used in conjunction with serum creatinine determinations it can aid in the differential diagnosis of the three types of azotemia: prerenal, renal, and postrenal. Elevations in blood urea nitrogen concentration are seen in inadequate renal perfusion, shock, diminished blood volume (prerenal causes), chronic nephritis, nephrosclerosis, tubular necrosis, glomerular-nephritis (renal causes), and urinary tract obstruction (postrenal causes). Transient elevations may also be seen during periods of high protein intake. Unpredictable levels occur with liver diseases¹.

ASSAY PRINCIPLE

The measurement of urea nitrogen is performed primarily either by a condensation reaction using diacetyl monoxime or by enzymatic hydrolysis of urea by urease to produce ammonia. The diacetyl monoxime method was first proposed by Fearon² in 1939, and modifications of this colorimetric method are in wide use. The use of urease in BUN determinations was introduced by Marshall³ who measured the liberated ammonia by titration with an acid. Ammonia produced by urease action has also been measured by nesslerization⁴, ⁵ and by the Berthelot reaction ⁶. NS Biotec Urea/BUN endpoint reagents use the modified Berthelot reaction. The series of reactions involved in the assay system are as follows:

- 1. Urea is hydrolyzed by urease to form ammonium and carbonate.
- 2. In an alkaline medium, the ammonium ions react with the salicylate and hypochlorite to form a green colored indophenol (2.2 dicarboxylindophenol).

Urea + H₂O		2NH ₃ + CO ₂
2NH ₃ + Salicylate + Hypochlorite	\longrightarrow	2,2-Dicarboxyindophenol

The intensity of the color produced is directly proportional to urea/BUN concentration. It is determined by measuring the increase in absorbance at $578-623~\rm nm$.

EXPECTED VALUES

Serum or plasr	ma
Urea	15 – 45 mg/dl 2.5 – 7.5 mmol/l
BUN	7.0 – 21 mg/dl 5.11– 15 mmol/l
Urine	
Urea	20 - 35 g/day 0.33 – 0.58 mol/day
BUN	9.0 - 17 g/day 0.66 – 11.6 mol/day

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference range. For diagnostic purposes, the Urea results should always be assessed in conjunction with the patient's medical history, clinical examination, and other findings.

REAGENTS

R_1	Urea standard	50	mg/dl	
R_2	Urease	>6000	U/I	
R ₃	Phosphate buffer, pH 8.0	100	mmol/l	
	Sodium salicylate	80	mmol/l	
	Sodium nitroprusside	6	mmol/l	
R_4	Sodium hypochlorite	20	mmol/l	
	Sodium hydroxide	400	mmol/l	

• Reagent Preparation & Stability

All reagents are ready for use and stable up to the expiry date given on label when stored at $2-8^{\circ}$ C.

SPECIMEN

- · Serum, plasma, and urine.
- Don't use ammonium heparin.

SPECIMEN PREPARATION & STABILITY

· For serum or plasma specimen

No special preparation of the patient is necessary. Bacterial growth in the specimen and high atmospheric ammonia concentration as well as contamination by ammonium ions may cause erroneously elevated results. Urea remains stable in serum samples for 24 hours at room temperature, for several days at 4°C, and for at least 2-3 months when frozen 1,7.

• For urine specimen

For 24 hours collections add thymol as preservative to prevent bacterial degradation to the container before collection. Urea in urine is stable for 4 days at room temperature⁸. Urine specimens diluted 1:100 (1+99) with water prior to analysis.

PROCEDURE

MANUAL PROCEDURE

Wavelength 578 - 623 nm

Cuvette 1 cm light path

Temperature 20-25 or 37 °C

Zero adjustment against reagent blank

Specimen Serum, plasma or urine

	Blank	Standard	Specimen
R_3	1.0 ml	1.0 ml	1.0 ml
Pre-warm at 37°C for one minutes if incubation temperature of the assay 37°C.			
R ₂	drop	drop	Drop
(urease)	(50 µl)	(50 µl)	(50 µl)
Mix, then add			
Standard		10 μΙ	
Specimen			10 μΙ
Mix, incubate for 3 minutes at 37°C or 5 minute at 20-25°C			
R ₄	200 μΙ	200 μΙ	200 μΙ

Mix, incubate for 5 minutes at 37° C or 10 minute at $20\text{-}25^{\circ}$ C. Measure the absorbance of specimen (A_{specimen}) and standard (A_{standard}) against reagent blank.

The color is stable for 120 minutes.

Automated Procedure

User defined parameters for different auto analyzers are available upon request.

CALCULATION

Calculate the urea concentration by using the following formulae:

Urea Concentration= Absorbance of Specimen X Standard value

Absorbance of Standard

Unit conversion

mg/dl x 0.166 = mmol/l BUN = Urea / 2.14

For urine specimen the results must be multiplied by the dilution factor and 24 hours collections by the volume in liters.

PERFORMANCE CHARACTERISTICS

All the performance characteristics are found in the corresponding Technical Report and available on request

LINEARITY

When run as recommended, the assay is linear up to 200 mg/dl (33.3 mmol/l).

If result exceeds 200 mg/dl (33.3 mmol/l), specimen should be diluted with ammonia free water and reassayed. Multiply the result by the dilution factor.

It is possible to use 1 ml of diluted R_4 (1:5 with distilled water) by this procedure; the assay is linear up to 300 mg/dl (50 mmol/l).

SENSTIVITY

The sensitivity is defined as the change of analytical response per unit change in analyte concentration at a path length of 1 cm.

When run as recommended the sensitivity of this assay is 0.6 mg/dl

QUALITY CONTROL

It is recommended that controls (normal and abnormal) be included in:

- · Each set of assays, or
- At least once a shift, or
- When a new bottle of reagent is used, or
- After preventive maintenance is performed or a clinical component is replaced.

Commercially available control material with established urea values may be routinely used for quality control.

Failure to obtain the proper range of values in the assay of control material may indicate:

- · Reagent deterioration,
- · Instrument malfunction, or
- · Procedure errors.

The following corrective actions are recommended in such situations:

- · Repeat the same controls.
- If repeated control results are outside the limits, prepare fresh control serum and repeat the test.
- If results on fresh control material still remain outside the limits, then repeat the test with fresh reagent.
- If results are still out of control, contact NS Biotec Technical Services.

INTERFERING SUBSTANCES

Haemolysis

Erythrocyte contamination doesn't elevate results.

Icterus

No significant interference.

Lipemia

Lipemic specimens interfere with the method of Berthlot.

Anticoagulants

Ammonium heparin should not be used.

Others

Ammonium ions should be avoided since it may cause erroneously elevated results. Color development in the Berthlot reaction is

suppressed by amines, thiols, steroids and ascorbic acid.

WARNING & PRECAUTIONS

- NS Biotec urea reagent is for in vitro diagnostic use only. Normal precautions exercised in handling laboratory reagents should be followed
- Warm up working solution to the corresponding temperature before
- The reagent and sample volumes may be altered proportionally to accommodate different spectrophotometer requirements.
- Valid results depend on an accurately calibrated instrument, timing, and temperature control.
- · Don't use the reagent if it is turbid.
- Specimens must be drawn in a soap and ammonium ions free collection device.
- Because of urea's susceptibility to bacterial contamination, it is recommended that all specimens be stored refrigerated at 4°C until analysis
- Don't expose the reaction medium to direct strong light

BIBLIOGRAPHY

- Rock, RC, Walker, WG & Jennings, CD (1987): Nitrogen metabolites and renal function. In: Tietz NW, ed. Fundamentals of clinical chemistry. 3rd ed. Philadellphia: WB Saunders; 669-704.
- 2. Fearon, WR (1939): Biochem. J. 331:902.
- 3. Marshall, EK (1913): J. Biol. Chem. 151:487.
- 4. Gentzkow, CJ (1942): J. Biol. Chem. 143:531.
- 5. Karr, WB (1924): J. Lab. Clin. Med. 9:329.

	Consult Instruction for Use
\triangle	Caution Consult Accompanying Documents
IVD	In Vitro Diagnostic Medical Device
n J ⁿ	Temperature Limitation
***	Manufacturer
EC REP	Authorized Representative In The European Community
REF	Catalogue Number
LOT	Batch Code
2	Use By

N.S BIOTEC MEDICAL EQUIPMENTS

66 Port Said St., Camp Shezar Alexandria – Egypt Tele: 002 03 592 0902

Fax: 002 03 592 0908 Website: <u>www.nsbiotec.com</u>

E- mail : info@nsbiotec.com

CMC Medical Devices & Drugs S.L. C/ Horacio Lengo, 18. 29006. Málaga, Spain

Rev.: 03 **Rev.** Date: 29/5/2023